
MicroPress: Detecting Pressure and Hover Distance in
Thumb-to-Finger Interactions

Rhett Dobinson
rhettdob@gmail.com

Saarland University, Saarland Informatics Campus
Germany

Marc Teyssier
marc.teyssier@devinci.fr

Research Center, Léonard de Vinci Pôle Universitaire
France

Jürgen Steimle
steimle@cs.uni-saarland.de

Saarland University, Saarland Informatics Campus
Germany

Bruno Fruchard
bruno.fruchard@inria.fr

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL
France

ABSTRACT
Thumb-to-finger interactions leverage the thumb for precise, eyes-
free input with high sensory bandwidth. While previous research
explored gestures based on touch contact and finger movement
on the skin, interactions leveraging depth such as pressure and
hovering input are still underinvestigated. We present MicroPress,
a proof-of-concept device that can detect both, precise thumb pres-
sure applied on the skin and hover distance between the thumb
and the index finger. We rely on a wearable IMU sensor array and a
bi-directional RNN deep learning approach to enable fine-grained
control while preserving the natural tactile feedback and touch of
the skin. We demonstrate MicroPress’ efficacy with two interactive
scenarios that pose challenges for real-time input and we validate
its design with a study involving eight participants. With short per-
user calibration steps, MicroPress is capable of predicting hover
distance with 0.57mm accuracy, and on-skin pressure with 6.71%
normalized pressure error at 6 locations on the index finger.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Human-
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1 INTRODUCTION
Directly interacting on the skin has generated a lot of interest in
HCI in the past decade [44]. Skin interactions offer "device-free"
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and intuitive gestures [14, 27, 54, 55]; the deformable surface of
skin furthermore allows for expressive gestural interaction [2, 47].
In this context, thumb-to-finger interactions [41] are particularly
interesting, as they are shown to be private, precise [6, 51] and
comfortable [17]. They can offer high accuracy in eyes-free condi-
tions with minimal training; moreover, using the thumb for ges-
turing on the skin preserves the natural haptic feedback of human
touch [17, 21].

To date, work in the area of thumb-to-finger interactions mostly
focused on touch contact interactions, thus only partly leveraging
the potential of interacting on the skin. The most comprehensive
design space for such interactions proposed by Soliman et al. [41]
considered four dimensions: the touch initiator (thumb or index
fingers), the touch location on the finger, the gesture performed,
and the flexion of the fingers while interacting. We propose to add
the depth dimension to this design space by enabling pressure and
hovering input for thumb-to-finger interactions (Figure 1a). Depth
enables more input capacity at all touch locations using the thumb,
and introduces hovering movements that extend the breadth of in-
teractions before or after skin contact. Such interactions promise to
enhance the expressiveness of gestures and require minimal move-
ment of the fingers, promoting social acceptability when interacting
with smart-glasses or smartwatches.

The primary challenge in recognizing such subtle interactions is
the level of precision required by users to fully control an interactive
system while maintaining natural touch and skin feedback. A wide
variety of technologies have been proposed to detect microgestures
and thumb-to-finger gestures, such as millimeter wave radar [27],
inertial measurement units (IMUs) [43], optical cameras [41], ca-
pacitive on-skin devices [51], or magnetic field sensors [17]. While
sensing techniques relying on computer vision are prone to oc-
clusion, IMUs and magnetic field sensors are not. We used the
magnetic sensitivity of the IMU by placing a magnet on the thumb
nail to sense movements [30]. Although this requires sensors and
magnets to be worn on the hand, they typically do not impede
comfort or natural hand movement. Combined with deep learning
techniques, these sensors can enable fine-grained gesture recogni-
tion and motion capture. For instance, recurrent neural networks
(RNN) with Long Short-Term Memory architecture (LSTM) have
been successful for estimating human pose [18] and recognizing
thumb-to-finger microgestures [46].
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Figure 1: a) MicroPress leverages depth for thumb-to-finger interactions by enabling real-time hover and pressure input. b) It
relies on IMU sensors placed on the index finger’s, and a magnet placed on the thumb.

We contribute MicroPress, a proof-of-concept system that can
detect pressure applied with the thumb at different locations on
the index finger, and the hovering distance between the thumb
fingertip and the index finger in real-time (Figure 1b). This system’s
goal is to demonstrate the benefits and capabilities of the interac-
tion technique through application example. Our implementation
preserves the natural hand movement and sensory feedback of the
skin by relying on Inertial Measurement Unit (IMU) sensors placed
on the three phalanges of the index finger, a small magnet placed on
the thumbnail, and deep learning leveraging Bi-directional LSTM
RNNs for times series data processing.We trained two deep learning
models that work together: the first infers pressure and location,
while the second infers distance. We show MicroPress’ efficacy
through two interactive applications that pose challenges for real-
time input: selecting commands in linear menus and controlling
the movements of a video game character in 2D. We evaluate its
design through a validation study involving eight participants, fol-
lowing well-established pressure input tasks [12, 42]. To the best
of our knowledge, MicroPress is the first system to date to demon-
strate the possibility to recognize pressure and hovering input for
thumb-to-finger interactions.

2 RELATEDWORK
We review related work on thumb-to-finger interactions and discuss
the numerous sensing technologies and their potential in detecting
pressure and hover distance. We relate these to the existing thumb-
to-finger interaction design space, highlighting the potential to
expand this space using the depth dimension.

2.1 Thumb-to-finger Interactions
The human hand is a highly dexterous structure that provides sig-
nificant performance advantages over other muscle groups of the
human body [53]. Fingers allow for accurate and fluid gestures
[27, 41, 51] and provide means for private, subtle [6, 51] and eyes-
free interactions [17, 21]. This precision is largely due to the natural
tactile feedback and proprioceptive qualities of moving and touch-
ing fingers [49]. The thumb is also highly dexterous and can be
used to point at various locations on the fingers in a comfortable
way [17].

Touch andmicrogestures have been the focus of previous work in
thumb-to-finger interactions. Earlier work focused mostly on touch
and stroke interactions. The design space developed by Soliman
et al. [41] consists of four primary dimensions: the touch initiator

(finger or thumb), the finger segment where the interaction hap-
pens, a gesture action (tapping, sliding along or around the fingers),
drawing a shape, and the fingers flexion. While some devices enable
pressure input [49], no device primarily focus on sensing depth.
Yet, doing so enables to detect precisely when a user touches their
skin and expands the interactions capacity before and after touch
contact. MicroPress demonstrates how to sense depth in the context
of thumb-to-finger interactions.

2.2 Pressure and Hovering Input
The literature demonstrated the high input bandwidth of pressure
input in various contexts such as pen input [38], mouse input [4],
back-of-device interactions [10], cloth interaction [42], or while
interacting on deformable surfaces [12]. These studies focused on
evaluating user performance through visual targeting tasks and
showed high accuracy rate for 10±2 discrete levels [4, 38, 40, 42, 50].
Fruchard et al. [12] recently reported higher input bandwidth with
soft surfaces, achieving a 5% error rate for 20 discrete levels, hinting
that the potential for pressure input may have been underestimated.
In the context of thumb-to-finger interactions, pressure input is
an ideal mode of interaction, requiring minimal movement and
small, fingertip-sized interactive areas. We investigate such inter-
actions with MicroPress and evaluate its accuracy with a dwelling
mechanism (cf. [11, 38]) to validate its design.

Detecting hovering distance on capacitive touch surfaces en-
ables additional controls compared to touch interactions [9, 15, 45].
Hinckley et al. [15] explored multi-layered interfaces one navigates
using the finger distance from a device, improving pointing ac-
curacy by inferring finger trajectory, and providing multi-finger
interactions to control the position of menus. Such interactions are
also useful for around-device interactions [30] to avoid occluding
visual information on display and leverage the space surrounding
a device, or for avoiding to mark the touch area with oily smudge
patterns in the context of touch-based unlocking patterns [24].

2.3 Sensing Thumb-to-Finger Input
Various technologies have been investigated for sensing hand-based
interaction. Computer vision using RGB or depth cameras is a com-
monly used technology [5, 28, 35, 41, 52]. For instance, the user
can wear a camera on the shoulder [41], the fingers [5], or the
wrist [52]. Computer vision approaches, however, are susceptible
to occlusion problems and suffer from a limited field of view, de-
spite solutions leveraging deep learning techniques [32]. Ishikawa
et al. [20] propose to position an array of ranging sensors on the
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Figure 2: (a) Zones considered on the index finger. DV, MV, PV correspond to the Distal, Middle and Proximal segments on the
Volar side, and DR, MR, PR segments correspond to the Radial side. (b) We mounted 3D printed markers on the magnet and
three sensors to precisely capture their positions using an Optitrack system. (c) Placement of the FSR sensor to measure thumb
tip to finger pressure.

wrists for identifying which finger touches and hovers at the back
of the hand. Millimeter-wave radars enable accurate fingertip and
hand gesture recognition [26, 27], but are typically located on a
fixed surface and require the user to interact in front of the sensor.
Thin-film capacitive sensors worn on the skin enable touch interac-
tions in various postures, mobility and lighting conditions [34, 48].
Capacitive touch sensing is also used in gloves to detect continuous
touch and pressure input [49]. While capacitive surfaces can de-
tect hovering movements, it is unclear what precision they would
achieve while bent and attached to the users skin.

Our work leverages inertial measurement units (IMUs) that can
detect acceleration and rotational velocity simultaneously. IMU data
sensor fusion algorithms allow for accurate measurement of hand
pose and orientation [39] and higher-level gesture recognition [22].
IMU sensors are small enough to be easily integrated into wearable
devices and ergonomically worn on the fingers [39] or in a ring form
factor [43], and do not require line-of-sight. Similarly, magnetic
field sensors do not require line-of-sight and can be used for precise
positional tracking [1, 6–8, 17, 30, 37]. IMU raw data is however
not readily usable. Sensor fusion algorithms are required to create
the sensors orientation vector, adding complexity and sources of
error. Like most electronic devices, noise is a consideration in data
generation, and results in drift and uncertainty in the IMUs data.
This can reduce accuracy of measurements as the measured vs
actual position of the sensor diverge. We use a data driven deep
learning approach to help reduce these effects.

2.4 Processing sensor input with deep learning
Deep Learningmodels have demonstrated their ability in enhancing
traditional sensing methods for interaction and gesture recognition.
Soli [27] is a millimeter wave radar system that leverages Long
Short-Term Memory (LSTM) recurrent neural networks (RNNs) to
capture temporal sequence information and classify dynamic mi-
crogestures [46]. Soli’s LSTM approach also enables the expansion
of the gesture space just by adding new training data, and is 100%
accurate in recognising non-gesture inputs, preventing accidental
interactions. Lai et al. [23] also leveraged LSTM RNNs in classifying
skeleton based hand gestures with 85% accuracy. LSTM networks
are demonstrably suitable for sequence based gesture classification,

and are well supported by widely used machine learning frame-
works such as Pytorch [36].

Neural networks are not only useful for gesture classification,
but can be used in regressing other measurements from IMU sensor
data. Deep Inertial Poser (DIP) [18] reconstructs real-time human
pose from sparse IMU sensor orientation sequence data using a
bi-directional LSTM model. We chose to use the BI-LSTM model
because it is able to learn the mapping between times series fea-
tures, IMU data and kinematic body model parameters, which is
the basis of our proof-of-concept. Instead of hand or body pose, we
learn the mapping of pressure and precise optical tracking data to
small changes in magnetic field and IMU sensor orientation due to
pressing the thumb and finger together, and hovering the thumb
above the fingers. We demonstrate with MicroPress that Bi-LSTM
models using IMU orientation and magnetic field motion sequence
data are able to infer pressure, position and distance measurements
in real time.

3 MICROPRESS: SENSING HARDWARE AND
DEEP LEARNING MODELS

The MicroPress system relies on two main elements: a hardware
element that consists of an array of 3 IMU sensors on the index
finger and a small magnet placed on the thumb, Figure 1b, and a
software element composed of an embedded sensor fusion and a
machine learning pipeline with 2 models. The primary reasons for
choosing IMU sensing was to preserve skin contact between the
thumb and fingers, to enable occlusion-free magnetic field sensing
and to gather finger segment orientation data through sensor fusion
algorithms. The sensors are also readily available, low in cost and
easily integrated into electronic circuits.

The IMUs are Bosch BMX160 9-axis IMUs combined with sensor
fusion algorithms [3, 16] to generate synchronized acceleration,
angular velocity, magnetic field and 4D sensor orientation data as
inputs to our models. 9-Axis IMUs provide many data points from
a single sensor. The magnet’s magnetic field is much stronger than
ordinary ambient fields. When paired with integrated sensitive 3-
axis magnetometers in the selected IMUs, it is capable of sensing
sub-millimeter motion required for precise depth measurement. We
made assumptions that the deep learning model would adapt to
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magnetic field interference and the stability of the sensor fusion
algorithms given sufficient data in an uncontrolled lab environment.

Similar to IMU arrays used in related work [39], we designed
a PCB that can be linked together with flexible cables to form an
array attached to the top of the index finger, see Figure 1b. Each
IMU is attached with double-sided tape to the back of the finger on
each phalanx: distal (tip), middle, and proximal (base). This design
keeps the fingertips uncovered to preserve tactile feedback. We
interface to the sensor array with a Teensy 3.2 microcontroller over
Serial Peripheral Interface (SPI) bus.

The second hardware component is a small magnet placed on
the thumbnail. We informed the magnet location from previous
work [6, 17] and selected a radial 6x2.5mm Neodymium-Iron-Boron
permanent magnet as the magnetic field source. This particular
magnet allows using the magnetometer’s full dynamic range, with-
out reaching saturation when the thumb and index finger are fully
pressed together. We divided the area on the index finger into 6
touch zones as shown on Figure 2a, with 2 zones for each of the
distal, middle and proximal segments corresponding to the radial
and volar sides [41].

Finally, we developed deep learning models that can infer real-
time thumb-tip to finger hover distance, and on-skin pressure at
each of the 6 discrete touch zones. We differentiate each zone based
on the distance from the thumb-tip magnet and each individual
IMU. Data from the IMUs is collected through USB serial at 100
Frames Per Second (FPS) which is the maximum output data rate
(ODR) of the sensor fusion algorithms. A single processed input
frame consists of 39 features; 27 from the 9-axis IMU sensors, and
a 4D sensor fusion orientation quaternion from each IMU.

3.1 Data Collection
Collecting ground truth data was performed separately for pressure
and hover distance to be able to focus on these tasks independently
and separate the optimization of the models.

Pressure and Touch Ground Truths.We used a 4mm wide Force
Sensing Resistor (FSR), designed to support a range of 10Nm which
matched earlier work sensing pinch pressure [12, 25]. The FSR was
stuck to the tip of the thumb so that the thumb-tip to finger pressure
can be measured Figure 2c. The sensor voltage was measured using
the 10-bit (0-1023) analog-to-digital converter on the MCU.

To better determine the systems effectiveness at different loca-
tions on the finger, the IMU and pressure data were collected in
separate sessions for each touch zone. To gather touch data, we
used a switch connected to a digital input on the MCU, that the
user would press and hold for the duration of touch contact. This
effectively labelled the data as touch or no touch, with the touch
value corresponding to the zone of that session.

Data was collected from 3 users who randomly varied hand
orientation, pressure, finger flexion and speed to help generalize
the system to all possible applications. We collected 30 minutes of
data from user 1, 5 minutes from user 2 and 10 minutes from user
3. This was repeated for each of the 6 zones, totalling 7 hours and
38 minutes of data or 2.748 million frames at 100 FPS.

Hover Distance Ground Truths. To gather distance ground truths,
we designed and 3D printed optical tracking markers for each
IMU and the thumb magnet using 4mm reflective hemispheres.

Then with an Optitrack motion-capture system, we recorded global
XYZ thumb-tip and IMU sensor coordinate, see Figure 2b. The
system was calibrated to 0.2mm residual error using 9 cameras
in a 70cm square field, allowing us to measure position with sub-
millimeter precision. We generated ground truths by calculating
the Euclidean distance in meters between the thumb marker and
each of the finger marker coordinates, generating three distances
per IMU sample. IMU and Optitrack data were synchronized using
Optitrack’s Motive Python API to generate inputs and ground truth
data.

To capture hover distance ground truths, the user moved the
thumb tip relative to each IMU sensor on the finger with the goal
of simulating real world hover and distance interactions. We also
varied hand orientation, speed and dwelling time at different hover
distances to help generalize the data to future applications. We
collected 960 000 frames of data over 2 hours and 40 minutes at 100
FPS from a single user.

Overall the samples were recorded from 3 users (2 identified as
male, 1 identified as female) aged from 27 to 32 years old (median =
28.7). Wemeasured their finger and thumb dimensions for the distal,
middle, and proximal sections. Measurements for the index finger;
22 to 24mm (𝑥 = 23.3, distal), 24 to 28mm (𝑥 = 26.7, middle), and 42
to 46mm (𝑥 = 44.0, proximal) section lengths, and for the thumb; 32
to 34mm (𝑥 = 33.3.0, distal) and 31 to 45mm (𝑥 = 38.3, proximal).

Dataset Creation. We created two separate datasets from the data
collection step. We used all available input features for each model,
with both datasets having 39 features per input frame. The 27 values
from the 3 9-axis IMUs were in LSB and standardized by subtracting
the feature column’s mean and dividing by standard deviation over
the entire data set. This same mean and standard deviation are also
subtracted from the data during inference. The orientation values
were normalized by the sensor fusion algorithm.

For the pressure dataset, we had two ground truth values per
sample. The touch zone (0-6), with 0 representing no touch, and
the 10-bit FSR value between 0-1023, with 15 used as a threshold
for detecting pressure input. The distance dataset had three ground
truth values per frame, each of the thumb-tip to sensor distances
in meters.

Table 1: BiRNN LSTM Pytorch hyperparameters for both
pressure and distance models.

Parameter Value

Layers 3
Hidden Dimension 400
Dropout 0.2
Learning Rate 0.001
Batch Size 80
Sequence Length 40
Loss SmoothL1
Optimization AdamW

3.2 Neural Network Architecture
We based the machine learning architecture on established deep
learning methods used with motion sequence IMU data [18, 46]. We
developed a Bi-directional Recurrent Neural Network with Long
Short-Term Memory cells (BiRNN LSTMs) as this was the highest



MicroPress: Detecting Pressure and Hover Distance in Thumb-to-Finger Interactions SUI ’22, December 1–2, 2022, Online, CA, USA

performing architecture in related work [18]. We created an iden-
tical model for each of our datasets using the Pytorch framework
resulting in a touch+pressure and distance model. During hyper-
parameter search, we selected cell hidden dimension, number of
layers, dropout, learning rate, batch size, sequence length, loss cri-
terion and the optimization algorithm. The final hyperparameters
for both models are in Table 1. Both models had regression outputs
and used linear activation layers. We also regressed touch location
linearly to simplify architecture, rounding touch location (0-6) to
the nearest integer.

A Smooth L1 [13] was used as loss function of the optimiza-
tion algorithm, which is a parametric Huber loss function. Huber
loss uses L2 Mean Squared Error loss when the absolute element-
wise error falls below beta (0.2); otherwise the L1 Mean Absolute
Error Loss is used, making the system more robust to outliers in
noisy IMU sensor data. An Adam with weight decay optimization
algorithm [29] was used as well as an optimizer that reduces the
learning rate when the loss improvement plateaus over successive
training epochs, helping to improve loss-minima search efficiency.

3.3 Model Evaluation
The models were evaluated between training epochs using a split
0.8 to 0.2 training to evaluation set. We calculated accuracy of touch
zone prediction in percent and pressure and distance errors as Mean
Absolute Error from target across all training samples. Our best
touch+pressure model resulted in 94.11% touch zone accuracy and
18.56 MAE for pressure. Our best distance model resulted in 0.41mm,
0.47 and 0.43mmMAE for distal, middle and proximal distance error
respectively.

3.4 End-to-end Real-time Inference Pipeline
3.4.1 Per-User real-time Calibration. Users’ tactile sensitivity, and
finger strength impact the amount of pressure they apply on their
skin. The pipeline addresses this by normalizing the output pressure
values, and removing output distance offsets. This results in a real-
time per-user device calibration that does not modify the deep
learning models or their inputs, but solely their output values. This
calibration step happens before interacting by defining a minimal
and maximal pressure level for each touch zone (values between
0 and 1024). Pressure values are then normalized and scaled to a
percentage of this pressure interval.

The finger thickness of users affects the measurements of the
hovering distances. MicroPress compensates with a one-time offset
calibration users must perform before use. The 0mm hover distance
offset is calibrated (i.e. the distance reported when the thumb and
finger tip were touching) using a 0.2mm thick 3D printed jig held
between the thumb and finger tip. The system then subtracts this
offset value from future distance outputs.

As positioning depends on a precise magnetic field measurement,
changes in sensor placement have a strong impact on the accuracy
of the models. Since depth sensing relies mostly on Z-axis posi-
tioning, this error can be largely corrected using our calibration
technique. However this remains a challenging issue due to the var-
ious hand morphologies that exist. In our study, we placed sensors
rigorously in the middle of the participants finger phalanges in an
effort to be as consistent as possible.

4 REAL-TIME INTERACTIVE SCENARIOS
In this section we present two interactive scenarios that demon-
strate how users can leverage pressure and hover input in real-time.
The first consists of a menu selection technique using pressure for
targeting and hovering for validation. The second scenario consists
of controlling the horizontal and vertical movements of a video
game character in a 2D space with touch zones for directions and
pressure for speed, and hover input for jumping. MicroPress sup-
ports low latency for comfort and accurate control in both scenarios.

Figure 3: Example of a pressure menu controlled with Mi-
croPress. (a) The user targets a menu item using pressure,
and dwells to select the item (indicated by the arrowhead).
(b) They select the item by hovering beyond a threshold dis-
tance.

4.1 Pressure Menu: Targeting and Selecting
Commands in a List

This scenario presents a menu selection technique inspired from
pressure targeting techniques [12, 38, 40] (see Video Figure at
[01:40]). In this techniques the users perform pressure interactions
on a single touch zone. They control a slider with pressure to target
a menu item (light blue bar Figure 3a). They can select an item (i.e.
a menu root or an item in a menu) by dwelling on a target for 1s to
select it. A selected item is indicated by an arrowhead above (Fig-
ure 3a). The validation action consists of hovering above a threshold
of 20mm for 1s (see Figure 3b) to confirm a selection. A menu item
is deselected after a short delay if no pressure was detected. We
used a Node.js server to communicate between MicroPress and the
React application with data updated at 100 FPS.

This interaction technique is useful in controlling augmented
reality devices such as smart glasses [19, 31] with subtle inter-
actions when compared to mid-air gestures. One important chal-
lenge of targeting and selecting commands with pressure is the
validation mechanism used [11]: dwelling and quick release mech-
anisms are prone to noisy input, while instantaneous validation
commands require a dedicated command (e.g. a mouse button).
The select+validation design allows users to select an item using
pressure, then perform a validation action using hover.
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Figure 4: Platform game: The user controls the character’s
movement direction, speed and jump height respectively
with touch zones, pressure (a) and hover input (b).

4.2 Platform game: Controlling a Video Game
Character’s Movement

In this scenario, the user controls a video game character in two
dimensions (Figure 4, see Video Figure at [02:10]). The character
moves horizontally at various speeds, and jumps at various heights.
The user controls the direction of the lateral movements of the
character by pressing two different touch zones (zone 4-MV and
6-DV). The level of pressure applied on each zone controls the
movement speed of the character, with a running jump triggered
at maximum pressure. Hover input controls the stationary jumping
height with a linear function.

This example leverages embodied interactions for real-time gam-
ing, thus providing a new type of playful user experience. Mapping
pressure to motion here creates an interesting relationship as both
the user and the character share a physical effort [33]. We used
the Unity3D platform game template1 and connected the player
controls to the MicroPress pipeline. Data was updated at 100 FPS.

5 VALIDATION STUDY
We conducted a validation study to test the accuracy of MicroPress
in real-time and to assess how the model generalizes to other hand
geometries. We use a within-subject design that consists of two
tasks: one to evaluate touch location and pressure accuracy, and the
other to evaluate hover distance accuracy. This study has received
approval from the ethics board of our university.

5.0.1 Participants. We recruited 8 right-handed volunteers from
our university (4 identified as male, 4 identified as female) aged
from 23 to 36 years old (median = 25.5) with various hand geome-
tries to participate in the study. They did not participated in the
training data collection. We measured their index finger and thumb
dimensions for the distal, middle, and proximal segments. Measure-
ments for the index finger segments were; 18 to 27mm (𝑥 = 23.5,
distal), 23 to 30mm (𝑥 = 25.8, middle), and 31 to 45mm (𝑥 = 37.0,
1https://assetstore.unity.com/packages/templates/platformer-microgame-151055

proximal) and for the thumb; 25 to 35mm (𝑥 = 29.0, distal) and 30
to 40mm (𝑥 = 33.6, proximal).

No participants reported any condition that could affect their
ability to perform the study and there was no remuneration or
reward for participating in the study.

For each task, participants began by sitting in front of a monitor
with their hand flat on a marked position on the table in front of
them, the sensing device powered off.

5.1 Task 1: Evaluating Pressure and Touch
5.1.1 Experimental Variables. We consider two independent vari-
ables for this first task. The touch zone: the distal, middle, and
proximal phalanges for the volar (respectively DV, MV, PV) and the
radial sides (respectively DR, MR, PR), see Figure 2a; and the target
pressure level: 15, 30, 50, 70, and 85%.

5.1.2 Task. A web based user interface was designed following
related work [25, 42]: the participant could control a slider moving
up and down based on the pressure applied while wearing the
sensor device (Figure 5a). Each trial indicated a touch location
zone and pressure target. The participant would press on their
index finger in the required touch zone and adjust the force to
reach the target pressure level as accurately as possible. On their
signal, the experimenter would start recording one second of touch
and pressure data, similarly to dwell timing techniques used in the
literature [4, 38]. Once recording was complete, the next trial would
begin. We randomized touch location zone and pressure targets,
with each combination repeated to give 6 touch zones x 5 pressure
levels x 2 repetitions, or 60 trials per participant (overall 60×8 = 480
trials). A session lasted around 40 minutes.

5.2 Task 2: Evaluating Hovering Distance
5.2.1 Experimental Variables. For the second task, we consider a
unique independent variable: the hover target distance. The target
distance consisted in 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18 or 20mm, as well
as a 0mm target that represents fingers touching between trials.

5.2.2 Task. The distance target was controlled using a 3D printed
jig with 1mm steps, to precisely control the different distance mea-
sures between users (see Figure 5b). We used this technique to
ensure a ground truth, as reaching a target distance between fin-
gers is challenging. The participants held the correct distance on the
jig using their thumb and finger tip, and the experimenter would
record one second of data on their signal.

Similar to task 1, a web interface indicated the target distance
and depicted a visual slider representing the distance between the
thumb and the fingertip.

We randomized the distance targets, except for the 0mm targets
between trials, and measured each target 2 times. Each participant
performed (12 targets + 12 0mm reference targets) x 2 repetitions,
or 48 trials which lasted around 20 minutes (overall, 48 × 8 = 384
trials).

5.3 Results
We analyze the results using the Mean Absolute Error (MAE) metric.
We report overall results per participant from both tasks in Table 2.

https://assetstore.unity.com/packages/templates/platformer-microgame-151055
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Figure 5: Study setups for the two tasks. (a) The user controls a slider through pressure and must reach a given target. (b) The
user controls a slider with hover distance and holds a given 3D printed jig reference distance.

We removed outlying measurements from the dataset that repre-
sented mistakes in the trial task if their absolute error exceeded the
overall mean plus 3 standard deviations (i.e., 𝑥 +3×𝜎). We removed
60 outliers (1.83%) from task 1 data, and 10 (0.46%) from task 2 data.

5.3.1 Pressure Absolute Error. Overall, the system yielded low ab-
solute errors based on the participants input (see Figure 6). We
observe a mean absolute error of 7.53 ± 0.26 between participants.
While errors were very low for some of the participants (c.f., pres-
sure error for participants 1 and 8 in Table 2), a Kruskal-Wallis test
yielded significant differences between participants (𝜒2 = 351.7,
𝑑 𝑓 = 7, 𝑝 < 0.001), as represented on Figure 6.

A Kruskal-Wallis test comparing the pressure errors obtained
for each touch zone revealed significant differences between them
(𝜒2 = 29.89, 𝑑 𝑓 = 5, 𝑝 < 0.001). We observe the following errors:
7.23± 0.47% (PR), 6.74± 0.47% (PV), 6.18± 0.45% (MR), 7.78± 0.55%
(MV), 7.07 ± 0.55% (DR), 5.28 ± 0.30% (DV).

5.3.2 Hovering Distance Error. Figure 6 depicts the mean absolute
errors of the hovering distance for each distance target. On average,
we observe an absolute error of 0.57 ± 0.04mm. A Kruskal-Wallis
test revealed significant differences between distance targets (𝜒2 =

289.7, 𝑑 𝑓 = 7, 𝑝 < 0.001); the absolute error drops for distances
larger than 1cm.

Table 2: Study results per participant. We report 95% confi-
dence intervals for each measure.

Task 1: Location and Pressure Task 2: Hover Distance
Participant Location Ac-

curacy (%)
Pressure
MAE (%)

Distance
MAE (mm)

1 87.3 ± 3.66 5.17 ± 0.45 1.06 ± 0.17
2 98.8 ± 1.04 6.13 ± 0.61 0.29 ± 0.08
3 94.0 ± 2.27 9.64 ± 0.76 0.08 ± 0.04
4 76.8 ± 4.06 10.8 ± 0.81 0.58 ± 0.13
5 97.9 ± 1.39 5.84 ± 0.56 0.49 ± 0.09
6 80.7 ± 3.79 6.48 ± 0.54 1.08 ± 0.12
7 85.6 ± 3.31 5.75 ± 0.64 0.60 ± 0.10
8 87.1 ± 3.21 3.79 ± 0.40 0.37 ± 0.09

Average 88.6 ± 1.09 6.71 ± 0.23 0.57 ± 0.04
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Figure 6: Mean Absolute Error of pressure for all touch zones
and hovering distances. Error bars depict 95% confidence in-
tervals.

6 DISCUSSION AND LIMITATIONS
While previous work proposed an extensive design space for thumb-
to-finger interactions [41], it did not include interactions leveraging
depth. MicroPress demonstrates that using a lightweight wearable
device that does not obstruct the natural tactile feedback, one can
sense pressure and hovering input in the context of thumb-to-finger
interactions. We presented a validation study with eight partici-
pants to assess the efficacy of MicroPress. Results showed that the
system yields high normalized pressure accuracy for various users
at six distinct locations on their index finger (6.71 ± 0.23% absolute
error), as well as high hovering distance accuracy (0.57 ± 0.04mm
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absolute error). These results demonstrate that depth for thumb-
to-finger interactions is a dimension that can extend touch design
spaces. Additionally, we presented two interactive scenarios posing
challenges for real-time controls. They demonstrate how Micro-
Press can support real-time input in different contexts, and propose
playful interactions and precise menu navigation and selection tech-
niques. Our work focused on building a proof-of-concept device
that enables pressure and hover input, but did not explore in depth
all opportunities such input provide for thumb-to-finger interac-
tions. Future work should explore this new space using knowledge
gathered from studies on interaction techniques leveraging depth
in the literature [9, 12, 15, 38].

MicroPress is only a proof-of-concept and comprises limitations
that one needs to consider while building a similar device. The
study results yielded strong variations between participants that
are likely caused by the various hand geometries and the sensors
placements. While collecting more data from more users or build-
ing more robust deep learning models might improve the device’s
accuracy, the placement of sensors on the hand remains a critical
factor for ensuring consistency between training and real interac-
tion contexts. We sought consistency while placing sensors in our
study by placing each sensor at the middle of each phalanx, but this
variable remains prone to slight offsets. We also did not fully con-
trol the users’ hand movements while performing the set of tasks,
but tried to reduce their possible impact by asking participants to
perform movements with various hands rotation. We accounted for
these types of problem using training data from users with different
morphologies and randomly moving and rotating the hand while
recording. While there is room for improvement, results obtained
with models trained on few users data are very encouraging as they
show the approach scales to various hand geometries without the
need for a user-specific model.

The sets of users involved in training the models and to evaluat-
ing its efficiency remain small but diverse. We tried to balance this
limitation by inviting participants with various hand geometries.
The study aimed at validating the approach rather than testing its
broad usability. While the results demonstrate the potential of our
approach, they only provide limited evidence of the generalization.
Further usability tests are required to understand how participants
perceive the type of interactions performed and assess their effi-
ciency. We hope our work can encourage extensive studies on depth
input in the context of thumb-to-finger interactions.

We presented two real-time interactive applications demonstrat-
ing the MicroPress concept. These scenarios leverage one-handed
depth input for selecting menu items and controlling a video game
character in a 2D space. MicroPress interactions could also be lever-
aged for 3D mid-air interactions when combined with hand-pose
algorithms used by conventional augmented- or virtual-reality de-
vices such as the Hololens or the Oculus Quest. They could comple-
ment most applications by enabling long-press and hover gestures
conventionally used in mobile applications. They could also com-
plement spatial interactions used to manipulate virtual objects in
space like, for instance, the Hololens finger-touching gesture for
selecting virtual objects. MicroPress could enable to control the
object parameters such as their size with pressure once the fingers
touch.

The primary challenge of systems like MicroPress is to be able to
run in ecological scenarios such as supporting interactions with an
augmented reality system. Our technique depends on a magnetic
field for precision, and optimizing its quality should be a focus for
future work. Data driven models requires data that covers possi-
ble edge cases such as magnetically noisy environments, different
sensor placements and hand geometries. An intrinsic property of
magnetic field sensing is that their strength is inversely propor-
tional with distance to the magnetic field source, the property that
allows us to sense distance in our proof-of-concept. Due to this de-
crease in magnetic field strength however, the IMU’s magnetometer
is less sensitive to variations as distance increases. This reduces
the IMU’s Signal-to-Noise ratio adding uncertainty at larger dis-
tances. Our work did not control magnetic field interference, and
we focused on a lab environment without shielding. The goal of
this work was to provide a hardware proof-of-concept that demon-
strates the benefits of the interaction technique. Future work should
be aware of uncertainties faced in ecological scenarios and improve
the device design in that regard.

While the system remains lightweight, it requires a desktop pro-
cessing unit to provide an end-to-end real-time inference pipeline.
We chose Bi-LSTM model in our prototype for its relevance and ca-
pabilities to detect time series of multi-dimentional data. Future data
driven approaches would seek to optimize the model and frame rate
so that it would be able to work with mobile or wearable devices.
The models could also be unified to reduce computation overhead
by training pressure and distance data with the same model. Finally,
based on the desired interactive scenario, the number of sensors
could be reduced. For instance, a ring based sensor or fingertip sen-
sor would be effective at measuring pressure and hovering distance
over a smaller finger area.

7 CONCLUSION
We presented MicroPress, a proof-of-concept system that can detect
pressure and hovering input for thumb-to-finger interactions using
a magnet coupled with IMUs and a deep learning pipeline. The
location of the sensors allows to preserve the skin-to-skin natural
tactile feedback of direct touch. While previous work addressing
thumb-to-finger interactions only considered touch and swipe ges-
tures, our work demonstrates one can sense depth in this context.
We presented interactive scenarios demonstrating how controlling
depth can enable embodied and subtle control. Finally, we validated
the design of MicroPress with a study involving eight participants.
The results show that the system yields low pressure and hover
distance errors. These are promising results for depth control in the
context of thumb-to-finger interactions leading the way for future
work to explore this space more thoroughly.
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