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Figure 1: We collected illustrations of vibrotactile experiences from scientific literature @ We developed and applied a novel taxonomy of
illustration characteristics to code them . We analyzed the codes with descriptive statistics and used them to identify potential shortcomings
in several illustrations for which we provide more comprehensive alternatives (C). This work uncovered several insights on the design of
illustrations of vibrotactile experiences.
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Abstract

Vibrotactile experiences (VTX) consist of a multitude of design
parameters and experiential dimensions that can be challenging to
communicate visually. To understand how this is commonly done
in scientific communication, we systematically reviewed VTX illus-
trations in academic publications. Using inductive and deductive
methods, we built a taxonomy detailing characteristics of VTX il-
lustrations that focuses on what is illustrated and how it is depicted.
Using the taxonomy, we coded a total of 768 figures spanning 409
publications. These results indicate that (1) half of the illustrations
communicate on the timing of vibrotactile feedback with regards
to users’ actions, (2) illustrations depict stimuli rather than expe-
riences and infrequently communicate multimodal aspects of the
experiences, and (3) contextual information of vibrotactile displays
and experiential aspects are often distributed across several com-
plementary figures. We conclude by discussing the benefits and
limitations of this taxonomy to support the design process.

CCS Concepts

« Human-centered computing — Visualization theory, con-
cepts and paradigms; Human computer interaction (HCI);
HCI theory, concepts and models.
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1 Introduction

As computing becomes increasingly multimodal [45, 68, 70], the
role of touch in Human-Computer Interaction (HCI) is receiving
growing attention. Vibrotactile systems are among the most preva-
lent technologies for tactual communication. Yet researchers and
designers face a unique challenge: unlike visual or auditory com-
munication, there is no shared standard for illustrating vibrotactile
experiences. Conveying what vibrations feel like, how they are trig-
gered in relation to user actions, and in what context they are mean-
ingful, typically relies on translation into another modality — most
often visual figures - and requires a specific visual language [7, 104]
leveraging metaphors and emphasizing on their facets [70]. In HCI
and Haptic Experience Design (HaXD) [98], where the focus is
often on the emergent user experience rather than the design of the
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stimulus itself [2, 24], this mismatch between medium of experience
and medium of communication is especially pronounced.

To support haptics researchers and designers in communicating
VTX and ultimately support the replicability and reproducibility of
their work [31], we take stock of the status quo. To better under-
stand what information about vibrotactile design and experiences is
currently encoded in illustrations and how this is done, we system-
atically reviewed figures' from literature. We focused on VTX that
we define as intentionally designed experiences aimed at stimulating
the user’s sense of touch through vibrations elicited by mechanical
vibration motors. Following a rapid review approach [109], we col-
lected 1652 papers from ACM and IEEE? for the past 25 years and
selected 1509 figures using eligibility criteria, then categorized them
in several categories to filter out figures relating only to VTX (Fig-
ure 1 (A)). We created a taxonomy both deductively by building on
methods from Antoine et al. [6] that proposed a taxonomy of inter-
action illustrations that unifies previous work on comic books [74]
and industrial design [83], and inductively by reviewing VTX fig-
ures. This taxonomy characterizes what is represented on an image
with regard to input, output and devices used. It also characterizes
how this information is represented and points out how time and
vibration dynamics are encoded, what visual characteristics and tech-
niques, type of composition, and facets [70] are used to represent
information (Figure 1 ().

We coded 768 VTX figures and present an empirical analysis
using descriptive statistics of all the codes (Figure 1 (©)). This anal-
ysis yields insights on the strategies and challenges to design VTX
figures and create a coherent set of illustrations conveying signifi-
cant information. Overall, we highlight that figures tend to either
provide information on the vibrotactile display and its placement
on the body or on the actual experiences, that for half of the figures
the relation between the vibrotactile feedback and users’ actions is
not conveyed or ambiguous, and that experiential dimensions of
VTX [53] are often not visualized.

To evaluate how this taxonomy can support illustration design,
we propose two approaches. We first present 5 case studies that
iterate on the design of figures from the dataset. We coded these
figures and identified unchecked codes exposing information that
could be added. Based on this, we provide alternate figures con-
veying more information on these aspects while respecting their
authenticity (Figure 1 (©)). We underline how these changes in-
crease the amount of information conveyed, thus potentially better
support the communication of VTX characteristics. Each case study
shows how the taxonomy supports systematically investigating
the illustration characteristics to identify potential shortcomings
and guide the reflection on potential improvements. The second
approach consists of a formative study with 11 haptic designers
(4 experienced and 7 novices) whom were tasked with designing
illustrations for VIX with and without support from the taxonomy.
The results indicate the designers did not rely on the taxonomy to
produce illustrations but used it post-hoc to analyze their decisions,
and that the taxonomy was overall considered useful to guide re-
flections on their design choices, but required more time to fully
grasp.

!we use “illustration” and “figure” to refer to, respectively, a graphical representation

of one or several VTX, and an illustration with a caption
2the list of all papers is available in the supplementary materials [37]
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How are Vibrotactile Experiences Illustrated?

In summary, this work is guided by the following research ques-
tion: What are the characteristics of VIX illustrations in scientific
papers? To this aim, we propose a taxonomy listing characteristics
of VTX illustrations and present an overview and analysis of the
state of the art of visual representations of VTX. This taxonomy is
designed to characterize visual representations of VTX and help
reflect on their aspects while creating or analyzing them to en-
sure they are not missing significant information one would like
to convey. We envision that, in future work, this taxonomy could
also support theory development [117], for instance by acting as
a mediating construct in causal modeling processes [113], thereby
enabling systematic formulation, testing, and refinement of visual
communication theories.

2 Related Work

This section reviews the literature on VTX and taxonomies of illus-
trations. We underline the various factors influencing the complex-
ity of VIX and how they tend be to communicated in general. We
then explain how previous work analyzed interaction illustrations
and what taxonomies characterize them.

2.1 Diversity of VTX

Tactile receptors in the skin make the human body sensitive to
vibrations, which enables to distinguish between different mate-
rials [8]. Meissner’s and Pacinian corpuscles sense light touch and
vibration (between 3-100Hz and 10-500Hz, respectively [18]), while
Merkel cells and Ruffini endings detect sustained pressure, texture,
and skin stretch [51]. Meissner’s corpuscles are concentrated on
the fingertips to raise acuity to shear and normal forces when
picking up objects, or exploring a surface and pressing into ma-
terials [51]. Pacinian corpuscles, in contrast, are concentrated in
the feet to sense vibrations relating to balance and locomotion [52].
This natural distribution over the body offers great opportunities
to produce a multitude of experiences. Research in haptics and
vibrotactile feedback has exploited this knowledge over decades to
induce bodily experiences through controlled actuation on the skin,
e.g., to reproduce material properties [28, 34, 91], simulate materials
virtually [26, 29, 35, 94, 105], or create tactile illusions [61, 93].
Vibrotactile feedback can be used in numerous ways to produce
different types of experiences with different goals. VIX can focus
on symbolic meanings such as notifications [12, 72] or directional
guidance [32, 77], or relate to sensory attributes and improve the
sense of agency of physical experiences [22, 65, 92], add physi-
cality to virtual visual experiences [27, 105], or produce sensory
illusions [43, 59, 115]. They can be holistically characterized with
design parameters such as timeliness, intensity, density and tim-
bre [53], pragmatic qualities such as their utility, consistency, fidelity
or congruency with other senses [25], and experiential dimensions
or mediated qualities such as their expressivity, harmony, realism
and immersion [25, 53]. The characteristics of the devices used to
produce these experiences are also of great importance [18]. The
type of actuators used, their form factor, their synchronicity and,
ultimately, in what context they can be used all strongly influence
the potential VTX felt by end-users. Depending on their design
and the VT displays they rely on, the fidelity of VTX can largely
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vary [11, 78], impacting specific scenarios focusing on the simu-
lation of realistic physical experiences mostly. The goal of VTX
may, however, not be to maximize this fidelity, but rather rely on
simple messages or metaphors that are reinforced by congruency
(e.g., [45]). Authoring tools like Macaron [99], TactJam [122], Col-
labJam [121] or VIREO [107] (and most of the tools Terenti and
Vatavu reviewed in their work) support creating such experiences
with low or high-fidelity while supporting rapid design iterations.

This highlights the variety and complexity of VT displays and
VTX, offering many opportunities to leverage vibrations for contex-
tually adequate and meaningful experiences. This also underlines
the many variables composing such experiences and the challenges
haptic designers face when illustrating them. We present a taxon-
omy that exposes significant variables to consider when illustrating
VTX, which can be used as a tool to guide the graphical design
procedure.

2.2 Communicating VTX

The design and communication of VTX can be broadly separated in
techo-centric and user-centric approaches [69]. The first approach
focuses on documenting the underlying technical parameters of the
vibration such as exposing the raw signals or design parameters
through diagrams and screenshots of authoring tools, which par-
ticularly supports reproducibility (e.g., [32, 71], see Figure 2). The
user-centric approach consists in communicating elements of the
human experience, such as experiential metaphors and sensory
descriptions like feeling heavier than usual [108] or illusory motion
sensations [30]. The field of affective design and social touch list
also many experiences related to human communication that im-
prove closeness over a distance (e.g., feeling distant cheek rubs [82]),
supports communication during co-located medical sessions [97],
or enhance other modalities when sending messages (e.g., textual
or graphical messages [49]). Illustrations often echo these techno-
centric and user-centric approaches of VIX by focusing rather
on the technical conditions to produce a specific stimulus, or the
targeted sensation (which is then inferred as an experience) [24].

Several projects proposed to document aspects of haptic expe-
riences to support reproducibility and replicability by classifying
them and using different visualizations to help navigate design
spaces. Haptipedia [101] is a web interface® designed to support
designers in choosing adequate force-feedback based on their goals.
Designers can navigate the space through multiple dimensions
exposing variables such as portability, robustness, or fabricability.
Conversely, VibViz [102]4 lists 120 vibrotactile signals, not devices.
Signals are mostly represented visually with their intensity through
time (what we refer to as a response curve). They are categorized
using 5 facets: physical characteristics, sensory characteristics, emo-
tional characteristics, usage examples and metaphors. Users can
navigate the signals through 3 panels focusing on a few facets,
and easily compare signals over multiple dimensions. Such tools
do not focus on illustrating tactile experiences, however, as they
primarily support navigating large spaces of haptic information
and identifying specific conditions.

3the web interface is available at https://haptipedia.is.tuebingen.mpg.de/
“the web interface is available at https://www.cs.ubc.ca/ seifi/VibViz/main.htm]
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Figure 2: Examples of rather techno-centric illustrations of VTX (from [32] ) and [71] (B)), as opposed to rather user-centric illustrations

(from [100] (©) and [49] D).

Communicating bodily experiences is not unique to the field of
haptics. Practices such as micro-phenomenology [87] and soma-
design [46] regard such experiences as essential in the use of inter-
active systems and propose methods to facilitate designing for and
reporting on them. Tools like bodymaps [4, 21, 112] illustrate body
sensations on a silhouette using markers or tangible tokens and sup-
port both the reflection while designing for bodily experiences and
offer means to report on them. Recently, Cavdir [16] used bodymaps
to reflect on sensations to design for vibrotactile-augmented music
experiences. While useful for reflection, this representation alone
does not integrate technical aspects of an experience, i.e., the type
of objects used to produce the bodily sensations (if any).

There exist multiple challenges when illustrating (vibro)tactile
experiences. First, the illustrator must identify all the factors in-
volved in the experience and represent them, and they must decide
on what is actually significant to communicate based on their in-
tention, i.e., should the focus be on the technical aspects, the bod-
ily sensations, or the lived experience? Second, representing such
experiences in a static format adds complexity to represent time
and abstract sensations [74]. Third, there is currently no conven-
tional graphical vocabulary to represent tactile experiences; while
bodymaps are becoming more prevalent, they remain limited to
convey information on VTX for instance. Illustrators, often with
backgrounds in other domains than graphical design, must then
come up with ideas that lack clear guidance.

The taxonomy we propose facilitates identifying what is repre-
sented on VTX illustrations and how it is represented, e.g., using
visual techniques to represent timely actions in static illustrations.
It also supports illustrators to reflect on missing codes that could
be significant for an illustration, thus suggesting improvements by
omission.

2.3 Taxonomies on Illustrations

Ilustrations are useful to tell stories and convey lots of visual in-
formation that evoke specific concepts to readers. While styles
and purposes can differ, illustrations are used in comic books [74],
instructional illustrations [36], graphical abstract for scientific

mediation [95], industrial drawings [83], to sketch user experi-
ences [14, 40], etc. Previous work in HCI characterized illustrations
of hand gestures [73], micro-gestures [60], or broader interaction
scenes and scenarios [5, 6].

A comprehensive taxonomy of interaction illustrations was pro-
posed by Antoine et al. [6] to unify previous taxonomies from vari-
ous domains such as comic books [74] and industrial design [83]. It
focuses on “interactive scenarios” and proposed two major types of
codes indicating how is information represented, and what is being
represented. Overall, they proposed six dimensions, three for each
major type. What codes include the interactive scenario dimension
that indicates the purpose of the image, its stillness and the activity
depicted; the users dimension that indicates the number of users
and the body part represented; the interactive system dimension that
provides information both on input and output channels (including
haptic feedback) as well as the actions being performed. How codes
include the composition dimension that provides information on
the point of view and layout of the illustration; the visual technique
dimension that describes how dynamism is represented along with
groups of elements and emphasis; the visual characteristics dimen-
sion that indicates the type of elements (i.e., text, photos, ...) and
colors used.

We build on this taxonomy of interaction illustrations and its
structure of what and how codes as interactive scenarios can cover
many illustrations of VTX, and augment its internal structure to
better match information on VTX.

3 Procedure and Methods

To answer the research question —What are the characteristics of
VTX illustrations in scientific papers? — we structured our research
process into three phases following a rapid review approach [109].
The first was collecting figures from literature (Section 3.1; done by
two authors), the second was establishing a taxonomy (Section 3.2;
done by all authors), and the third was applying the taxonomy on
the data collected (Section 3.3; done by two authors).



How are Vibrotactile Experiences Illustrated?

3.1 Phase 1: Data Collection

The data collection consisted of four stages: (1) a bibliographic
search, (2) the processing of bibliographic records and PDFs (Fig-
ure 3 shows the process in detail), (3) the extraction and classifica-
tion of figures, and (4) the construction of the final dataset.

3.1.1 Bibliographic Search. A systematic literature search was per-
formed on June 11, 2025 using two major digital libraries that pub-
lish research in Human—-Computer Interaction (HCI) and haptics:
the ACM Digital Library (ACM DL) and IEEE Xplore. The search
strategy was identical across both libraries, using the keyword “vi-
brotactile” in title or abstract and restricting publication dates to
the period 2000—2025.

Both the ACM DL and IEEE Xplore were filtered for peer-
reviewed documents, for instance from journals and conferences’.
We downloaded the BibTeX metadata and removed 8 duplicates
using the exact matches on the combination of title, first author and
publication year. The final bibliography comprises 1684 entries (532
from ACM and 1152 from IEEE). All data is available at a dedicated
OSF repository [37].

3.1.2  PDF Processing. We retrieved 525 of 532 PDFs (98.7%) from
the ACM DL and 1127 of 1152 from the IEEE Xplore (97.7%) and
manually screened all 1652 accessible PDFs according to predefined
eligibility criteria. Exclusion criteria included non-peer-reviewed
works, editorials, patents, theses, articles without figures, and works
focusing exclusively on other haptic modalities (e.g., pneumatic,
force feedback, mid-air, electro-tactile, passive haptics, thermal, or
chemical). Based on these criteria, we excluded 1097 (66.4%) PDFs
and kept 555 PDFs (258 from ACM and 297 from IEEE) for further
processing.

3.1.3 Image Extraction and Verification. We automatically
extracted figures from the remaining 555 PDFs using
pdffigures2 [19]. It failed for 33 PDFs (21 from ACM and
12 from IEEE), which we manually reviewed to extract 80 more
figures®. After extraction, all automatically processed PDFs (n=532)
were manually checked for missing or incorrectly cropped figures.

SFiltering options differ between IEEE Xplore and ACM DL based on the user interface.
IEEE Xplore offers conferences, journals, and early-access articles, whereas ACM DL
offers more content types such as research articles, short paper, extended abstract,
work in progress, etc.

SWe manually extracted only the figures relevant for analysis.
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A total of 200 figures (123 from ACM and 77 from IEEE) were
added or corrected manually. In total, we collected 4425 figures
(1881 from ACM and 2544 from IEEE).

3.1.4 Image Filtering and Classification. We defined five inclusion
criteria to screen figures. Figures must either represent the intent
behind using VT feedback, represent the context of an experience,
represent one or several users, represent a VT display, or represent
VT signals (see Table 1 in Appendix A for details). The filtering and
classification of figures was conducted manually by two authors’.
Out of the 4425 figures initially collected, we excluded 2916 (1185
from ACM and 1731 from IEEE), corresponding to 65.9%. We cate-
gorized the remaining 1509 figures (696 from ACM and 813 from
IEEE) as Hardware Setup, Study Setup, Study Related, Interactive
Scenario, Model, System Architecture, Vibrotactile Experience, and

Unclear (see Figure 4).

3.1.5  Final Dataset. For the analysis, we focused on figures catego-
rized as depicting Vibrotactile Experiences. Out of 837 such figures,
69 were deemed too ambiguous or insufficiently detailed and hence
excluded. The final dataset consists of 768 figures depicting VTX.
These figures were retrieved from 409 papers (189 from ACM and
220 from IEEE) published between 2002 and 2025 (see Figure 18
in Appendix A), across 111 venues (43 from ACM and 68 from
IEEE). The most prominent venues were: ACM CHI (50 papers),
IEEE World Haptics Conference (36 papers), IEEE Transactions
on Haptics (34 papers), ACM UIST (17 papers), and IEEE Haptics
Symposium (17 papers).

3.2 Phase 2: Establishing a Taxonomy

To establish the taxonomy, we initially worked deductively from
literature. We then iteratively tested the taxonomy on subsets of the
data and further refined it to ensure its applicability to characterize
VTX.

3.2.1 Deductive Design. We built on the structure of what and how
codes from the taxonomy of interaction illustration by Antoine et al.
[6]. We restructured the what codes to more specifically describe
details of vibration characteristics and the physical sensations they
produce. For instance, some codes focus on the characteristics of

"Manual filtering and classification required approximately 120 hours, completed over
a three-week period.
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Figure 3: Flow diagram of the literature review process.
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Figure 4: Count of figure types for the 1509 figures included in the
dataset (696 from ACM and 813 from IEEE).

the vibrotactile displays used and the timing of vibrations with re-
gard to users’ actions. We also integrated frameworks from haptics
research to identify important categories to consider. We included
information on the device’s grounding from Culbertson et al. [23]
and Adilkhanov et al. [1], some experiential dimensions and de-
sign parameters of VIX from the HX model developed by Kim and
Schneider [53], and the facets of VTX described by Seifi et al. [102]
and MacLean et al. [70].

3.2.2  Inductive refinement. Once the data collection was concluded
and the initial taxonomy established, we brought data and taxon-
omy together to ensure alignment. Four co-authors collaboratively
coded 3 subsets of the datasets iteratively using Antoine et al.’s
coding tool [6]%, comparing and discussing after each iteration
(authors coded 42, 20 and finally 15 figures) to refine the codes.

To ensure the coherency of the resulting taxonomy, the two first
authors independently coded the same two subsets of 100 figures
each. Krippendorff’s alpha [58] indicated satisfactory inter-rater
reliability in line with previous work [6]: 62.1 (o = 13.9) and 60.6
(o0 = 12.3). Then, they collaboratively reviewed the lowest 25%
of figures with the highest disagreement for each set to identify
confusions and refine the taxonomy’s codes.

3.3 Phase 3: Applying the Taxonomy

The remaining dataset was split between the two first authors who
reviewed and coded the other 581 figures. After initial coding, each
of the two authors reviewed the other’s coded figures and made
revisions as deemed necessary. Differences between initial and
revised coding were automatically extracted and the original coder
reviewed the proposed changes and either accepted or rejected them.
If significant disagreements remained, both coders discussed the
figure collaboratively until a consensus was reached. This procedure
was designed to ensure a reliable and consistent application of the
taxonomy while allowing for critical reflection and discussion to
resolve ambiguity.

3.3.1 lIdentifying lllustration Categories. While analyzing illustra-
tions, we identified a few categories that codes alone or even com-
binations of codes may not clearly distinguish. To ensure we could
identify them in our analysis, we created 4 meta-codes that we used
during the coding procedure. We tagged illustrations presenting
multiple experiences which sometimes listed entire sets of VTX,
illustrations depicting tactile illusions, illustrations exposing de-
sign parameters of experiences with screenshots of authoring tools

8accessible at https://github.com/LokiResearch/IllustrationTaxonomy
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or mathematical formula, and illustrations depicting vibrations as
“raw” signals by using audio signals such as response curves (as
done with VibViz [102]).

4 A Taxonomy of Illustration Characteristics

In this section, we present the dimensions, categories and codes of
the taxonomy.

4.1 Dimensions, Categories and Codes

A comprehensive visual representation of the taxonomy is depicted
in Figure 5. These codes were both deductively and inductively
produced, which means they build on the literature of illustrations
taxonomies and descriptive frameworks from haptics research, and
were refined using the dataset of 768 VI X illustrations. Based on this
methodology, the resulting codes comprehensively characterize all
images we analyzed from the state-of-the-art. As research scenarios
extend and include other input for VTX, the codes should reflect
these changes and include more categories (e.g., other types of input
modalities) to characterize them better.

The codes are rarely mutually exclusive. A combination of them
can be used in a single category to describe experiences that involve
multiple, related factors. For instance, experiences relying on a
vibrotactile tablet could be considered both touchable or graspable
depending on whether the tablet is being held (see Section 4.1.3 for
details on these codes), in which case both codes could be checked
to describe a “mixed” scenario.

4.1.1 Input (what). This dimension considers all kinds of input
that impact the VTX, whether by triggering the experience or mod-
ulating it in some ways (e.g., walking while an augmented ground
vibrates [114]). The dimension’s overall purpose is to clarify the
relation between users’ actions and vibrotactile feedback (i.e., time-
liness and expressivity [53]), as well as clarify the type of input and
devices used for interaction. The action category indicates whether
users are passive, performing discrete actions such as pointing at a
target, or performing continuous movements. The modality cate-
gory lists four primary modalities we encountered in the dataset,
namely gaze, locomotion, vocal or manual interactions; manual in-
teractions include both (virtual) object manipulation and mid-air
movements. We list less modalities than previous work [6] as other
categories were not representative of the illustrations we studied,;
note that other input modalities could be integrated in this category
if it better supports the analysis. We leverage Buxton’s [15] frame-
work on input device characteristics to further describe manual
interactions (manipulation category) using two sub-categories:
the type and degrees-of-freedom of the input. We then consider the
type of device used to mediate the users’ actions, as well as the
number of users interacting together. The last category indicates
the effect of the input on the output and whether it is causing
it (e.g., a vibration triggers when pressing a button or reaching a
pressure threshold) or modulating it (e.g., rotating one’s body would
affect world-centric directional cues).

4.1.2  Output (what). This dimension describes the number of
users feeling the experience, which can be different from the
number of users interacting, as it is the case with an audience expe-
riencing vibrotactile feedback during artistic representations [111].
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Figure 5: Taxonomy of VTX illustration characteristics. It is split in what and how codes including 3 and 5 dimensions respectively.

The congruence of senses category is directly inspired by the
unified HX model from Dalsgaard and Schneider [25]; it indicates
whether the VTX is multimodal and includes more than just the tac-
tile sense (e.g., displaying a texture on a virtual ground [103, 105]).
The last category describes the coupling between vibration signals
and other events, i.e., whether their parameters vary according
to them. These parameters can depend on events that are user-
independent when watching an augmented movie [42], or coupled
to user input, such as pressing on a car pedal [92] or twisting a
rod [43]. If vibration signals are immutable audio messages [12]
such as notifications triggered upon receiving a message, they are
considered static.

4.1.3 Device (what). The first category describes the grounding
of the device; we directly used types of grounding described by
Culbertson et al. [23], i.e., the device is grounded either in the world
or the body while its effector is in direct contact with the body, or
is a wearable, meaning that the entire device is directly attached
to the skin and does not move (e.g., a smartwatch). If ungrounded,
the device can be either graspable (e.g., a smartphone) or touchable
(e.g., an interactive surface like a tabletop).

We categorize the layout (arrangement) of actuators as being
fixed or adaptable, i.e., actuators are part of the same structure or
can be moved independently, and consider the effective shape of
these layouts, i.e., whether they are independent points, an array
(1D) or a grid (2D) (e.g., they are coordinated to produce phantom

illusions [3] or apparent motion [48]), or other types of arbitrary
shapes. We also consider the placement of actuators on the body
(i.e., actuation on category), and consider several zones (head,
torso, arm, leg), with a specific focus on hands as they are known
to be especially sensitive to tactile stimuli [50, 118].

The last category describes the VT display configuration. We
define four levels of configuration: bare materials / components de-
scribe actuators directly placed on the skin (e.g., Kinesiotape [122]),
custom assembled devices providing a structural frame around ac-
tuators to either fix them in place or constrain their movements
(e.g., integration in a shoe sole [120]), some VT displays modify /
augment off-the-shelf devices with VT capacities (e.g., adding an
actuator to a VR controller [27]), and some VTX are directly pro-
duced with off-the-shelf devices (e.g., using the Meta Quest 3 VR
controllers [116]).

4.1.4  Composition (how). This dimension focuses on the structure
of the illustration. It indicates the number of panels composing
the illustration and the number of dimensions used to convey
information, e.g., 2D diagrams, or 3D pictures. The body represen-
tation category indicates whether users’ bodies are represented,
and to what detail. This representation is realistic when represent-
ing actual body limbs or parts, and abstract when suggesting a body
part (e.g., showing a cylinder as a transversal cut of a forearm, see
left of Figure 6 (). It can represent the body partially by focusing
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Figure 6: @ shows examples of body representation extracted from [84], [20] and [86] (left to right). shows on the left examples that use
lines and arrows to illustrate directions (from [67]) and trajectories (from [57]) of vibrotactile feedback through time and between actuators;
and on the right illustrations conveying information on the physical sensation, through symbols (from [75]) or through textures (from [110]).
© shows illustrations using different cognitive framework: physical science (from [54]), metaphors (from [106]), and music theory (from [44]).

on specific parts (e.g., one hand), or without a focus (e.g., showing
the entire torso).

4.1.5 Visual Characteristics (how). This dimension indicates the
textual and pictorial elements used in the illustration. We reuse
the codes from Antoine et al.’s [6] work, excluding information on
color types and line styles.

4.1.6  Visual Techniques (how). This dimension points out the tech-
niques used to convey time-related or sensory information. We
reuse the dynamic category from Antoine et al. [6] that includes
the stroboscopic, motion blur, and onomatopoeia visual effects to indi-
cate temporal events, as well as lines and arrows for trajectories and
directions. We added the ripples code as many illustrations represent
vibrations using them. The trajectories and directions codes include
both objects or people moving in space and the “displacement” of
vibrations between actuators through time (Figure 6 (B) left).

The sensation explanation category indicates whether the
illustration provides information on the sensation targeted (theo-
retically) or induced (verified empirically). We differentiate textual
information such as quotes and annotations from pictorial elements
such as symbols or textures (Figure 6 (B) right).

4.1.7  Encoding (how). While visual techniques convey information
on time, we wanted to go beyond and characterize how variables
like time or vibration dynamics (intensity, frequency) are encoded
on the illustration. Time, for instance, can be encoded through the
axis of a plot, using numbers, or multiple frames. Vibration dy-
namics include design parameters of vibrations described by Kim
and Schneider [53], i.e., the intensity, timbre and density. We code
these using Bertin’s visual variables [9] and add the mathematical
representation that was used in several illustrations.

4.1.8 Cognitive Framework (how). We integrated the five facets
of haptic experiences described in MacLean et al.’s [70, p. 114]
work, originally from Seifi et al.’s [102] work. These facets are
aspects of VTX, and can be seen as a framework to present them
and reflect on them. For instance, a VIX can be described using
physical science with plots and measures, or through metaphors
such as representing a butterfly landing on the hand (Figure 6 (©),
middle). They can relate to usage examples like directional guidance
when walking [85] or mappings of letters to vibration patterns [79],
or focus on sensory attributes to describe tactile illusions. We call
these facets cognitive framework, and add music theory to the list
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Figure 7: Count (top) and average per paper (bottom) of figures de-
picting VTX and hardware setup / system architecture. All figures
belonging to both categories were removed, so the two sets are ex-
clusive.

as some illustrations use concepts related to tempo and pitch to
describe vibrations (Figure 6 (©)).

5 Statistical Analysis of the Coded Figures

In this section, we present a descriptive statistical analysis of the
coding procedure results. We provide information on the figure
types and their proportion in papers, and provide descriptive sta-
tistics per dimension and category. To support reproducibility and
allow other or further analyses, all the data and statistical analysis
can be found online in the OSF repository [37].

WHAT
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5.1 How is Information on Devices Conveyed?

Figure 7 depicts the number of figures representing VIX and hard-
ware setup(s) or system architecture(s). The two sets represented
are mutually exclusive, which means that these VTX figures are
not providing information on the system (i.e., no codes used in
the Device dimension). These results indicate that, overall, both
types of figures seem to be used in papers, thus information on the
vibrotactile display(s) can often be presented outside the context of
VTX.

5.2 What Information is Primarily Conveyed in
VTX Hlustrations?

Figure 8 shows the proportion of figures coded with codes from
each dimension and category. We counted a figure only once per
dimension/category, even if it used several codes from it.

The most striking result is that the Input and Visual Technique
dimensions were used in 363 figures (47.3%) and 429 figures (55.9%)
respectively. This indicates that user input is explicit for half of the
figures, and remains ambiguous or unspecified for the rest. While
this information might clearly be conveyed verbally or through
the context of the paper, this shows an important trend in VTX
illustrations.
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Figure 8: Proportion of dimensions (left) and categories (right) used for all figures in the dataset. Each figure is counted only once per

dimension/category, even when using several codes from it.
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The Device dimension is also considerably less represented than
others with 540 figures (70.3%). This resonates with the results
from section 5.1, suggesting that information on devices is likely
conveyed in figures that are not focused on VTX.

Details regarding categories (Figure 8-right) indicate that illus-
trations are often not including information on the number of users
involved (users interacting 40.2%, users feeling 45.4%), whether
senses are used congruently (35.8%), which part of the body are
actuators placed on (body representation 53.5%), explanations of
sensations (29.8%), and visual dynamics (40%). We detail results
regarding each category in Section 5.3.

5.2.1 The first appearing figures in papers tend to provide broader
information than the others. We consider for this analysis the posi-
tion of a figure in a paper. We compare the first figures appearing in
papers, that are sometimes teaser figures® located right underneath
the title, to the others; Figure 9 shows the proportion of codes used
for first figures (210 figures in total) and the others (558 figures).
This analysis yields that the first figures in papers provide more

9Teaser figures are only found in ACM papers.
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information than others on multiple aspects, especially with regard
to what is represented as differences are remarkable!? for 7 what
categories and a single how category. Considering only remarkable
differences larger than 25%, first figures depict more often the users
involved (interaction 35.7%, feeling 35.8), their action (33.9%) and
the input modality (26.1%), the device’s grounding (37.9%), the body
representation (34.5%) and body parts used for actuation (32.7%).

5.3 Descriptive Analysis for Each Dimension of
Codes

We present the descriptive statics for all dimensions and codes
on Figure 10 (what codes) and Figure 12 (how codes). Note that one
figure can use several codes from the same dimension, meaning that
proportions within a dimension can go beyond 100%. For instance,
actuators can be placed on the forearm and the hand.

5.3.1 Input. Codes from this dimension are used in total for 363 fig-
ures (Figure 10). Most figures depict a single user interacting (75.8%,

10We consider differences as “remarkable” beyond 25% gaps
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Figure 10: Descriptive statistics for all what dimensions, categories and codes. Proportions at the dimension level are calculated relative to the
entire dataset (e.g., 363 out of 768 figures for Input), whereas proportions within a dimension are calculated relative to the total number of
figures in that specific dimension (e.g., 363 figures as baseline for Input).
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Figure 11: Aggregated results for each body part as proportion of the
540 figures in the Device dimension.

275 figures) as opposed to only a few showing two users collabo-
rating (10.2%, 37). Users were almost evenly depicted performing
discrete (31.1%, 113) and continuous (25.1%, 91) actions, than being
passive (46.3%, 168) while experiencing the feedback. 25% of these
“passive” figures depicted locomotion, while the primary modality
was manual (52.9%, 192). Most actions indeed consisted of isometric
pointing (34.4%, 125), often using mediated objects like tangible
devices (16.8%, 61) or touch surfaces (16.5%, 60).
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5.3.2  Output. Codes from this dimension are used for 719 figures
in total (Figure 10). The results yield three important insights: (1)
the VT feedback is much more often static (73.2%, 526 figures) than
dynamic (14.7%, 106 - both action-coupled and user-independent
codes combined), at least in their depiction; (2) the number of users
experiencing VT feedback is explicit for about half of the figures
we reviewed (417 figures do not convey this information in the
dataset), and scenarios are often including single users (46%, 331)
rather than several (2.8%, 20); (3) less than half of the illustrations
provide information on the congruence of senses (41.0%, 295). The
tactile sense is associated the most with the visual sense (21.0%,
151), and very rarely with hearing (2.1%, 15). Many figures (17.9%,
129) depict scenarios in which no congruence is depicted.

5.3.3 Device. Codes from this dimension are used for 540 figures
in total (Figure 10). Many illustrations depict fixed configurations of
actuators (48.9%, 264 figures) as opposed to independent actuators
offering adaptable topologies (6.9%, 37). Actuators are more often
used as arrays (28.7%, 155) than 2D grids (25.9%, 140). Devices are

Encoding 651 of 768 = 84.8% G )

proportion of codes in 651 figures

Vibraton ——— size 459 G )
dynamics — color e @ )
— value 243% G )

— texture 22% O )

— orientation 09% C_———— )

— shape 167% G )

— math. formula 25% C_—————— )
66% @ )
172% Gl )
103 @)
09% C____——— )
476% N )

numbers
— arrows
— multiple frames
— color
— axis

Time

Cognitive Framework

734 of 768 = 95.6% (I )

proportion of codes in 734 figures

405% I

Framework physical science

— sensory 218% G )
attributes

— emotional 56%» @ )
connotations

— metaphoric 64% @)

associations
— usage examples
— musical theory

407% IR
22 C———————)

/

Visual effects stroboscopic 84% @ )
dynamics effect

— onomatopeia 07% C_——— )

— motion blur 09% C—————— )

lines and —— trajectories SRR I |

arrows — directions 373 G )

— ripples 378% G

Sensation —— text annotation 198% G )

explanation — quotes 37% C_———

—— pictorials —— faces / emojis 51% € )

— color / opacity 42% O )

— symbols 173% Gl )

— texture 51% €

— depiction of 124% G )

physical events

Figure 12: Descriptive statistics for all how dimensions, categories and codes. Proportions at the dimension level are calculated relative to the
entire dataset (e.g., 651 out of 768 figures for Encoding), whereas proportions within a dimension are calculated relative to the total number of
figures in that specific dimension (e.g., 651 figures as baseline for Encoding).
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more often wearables (38.7%, 209) than graspable (13.5%, 73) or
world-grounded (6.11%, 33).

We aggregate on Figure 11 all codes for each body parts to assess
which ones are the most represented. Hands are the most often
depicted or mentioned to place actuators (35.7%, 193), followed by
the arms (19.6%, 106) and the torso (13.5%, 73). These results indicate
VTX primarily involve the upper body, especially the wrist (10.2%,
55) and hands, with a focus on fingers (23.7%, 128).

5.3.4 Composition. Codes from this dimension are used for 768
figures in total (Figure 12). The results yield that 447 figures (58.2%)
represent body parts, either in a realistic or abstract way, while the
others do not. A bit less than half of the figures depict body areas
in detail (337, 43.9%) while the rest shows larger body parts (110,
14.3%). lllustrations often use 2D (78.5%, 603) as opposed to 3D (34%,
261) to convey information.

5.3.5 Visual Characteristics. Codes from this dimension are used
for 768 figures (Figure 12). Interestingly, most illustrations are com-
posed of diagrams (78.6%, 604 figures) and textual annotations
(58.1%, 446) showing an overall trend towards technical illustra-
tions.

5.3.6  Visual Techniques. Codes from this dimension are used for
429 figures in total (Figure 12), which is about half of the entire
set. Most of the visual effects were depicted with ripples (37.8%,
162 figures) or directions (37.3%, 160). Trajectories (9.1%, 39) and
stroboscopic effects (8.4%, 36) were less used. When information on
sensations is conveyed, illustrations mostly use annotations (19.8%,
85), symbols (17.2%, 74) or depict physical events (12.4%, 53).

5.3.7 Encoding. Codes from this dimension are used for 651 figures
in total. For about half of the figures, time is encoded in illustrations
as an axis (47.6%, 310), which is commonly used when representing
response curves or vibration signals. Time is sometimes encoded as
arrows (17.2%, 112) or using multiple frames (10.3%, 67) and num-
bers (6.6%, 43) to show what actuators are triggered in a sequence.

Visual variables are used to show vibration dynamics, usually
by varying the size when showing signals as response curves or
diagrams on 2D plots (45.9%, 299), using the value (i.e., opacity) as
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intensity of actuators (24.3%, 158), or shapes (16.7%, 109) and colors
(11.8%, 77).

5.3.8 Cognitive Framework. Codes from this dimension are used
for 734 figures in total. Illustrations represent mostly VTX as usage
examples (40.7%, 299 figures), and use physical science to describe
their characteristics (40.5%, 297). This resonates with time being
often represented as an axis, and illustrations including diagrams. A
little more than a fifth of the figures leverage sensory attributes to
describe haptic experiences (21.8%, 160), and less utilize metaphoric
associations (6.4%, 47) or emotional connotations (5.9%, 43).

5.4 Identifying and Characterizing Categories
of Ilustrations

Figure 13 shows the set of codes used the most with each meta-codes
we presented in Section 3.3.1. For context, it is important to know
that the most frequent codes in the dataset are: visual characteristics
> diagram (78.6%), composition > dimensions 2D (78.5%), composition
> several panels (73.2%), output > static (68.5%), visual characteristics
> text (58.1%); the rest is below 50%.

Looking at codes used more than 80% for each category of il-
lustrations, how codes seem to be the most representative of these
categories. Figures showing multiple experiences are represented
mostly by multiple panels, 2D diagrams and static vibration pat-
terns. Figure 14 (A) shows examples of such illustrations.

Figures showing signals are intersecting with the previous cat-
egory (see Figure 13). A few codes are particularly relevant for
this category: time is almost always represented as an axis (94%),
vibration dynamics (e.g., signal intensity) are often mapped to size
(87.6%), and these illustrations rely mostly on physical science (86.2%)
to explain the experiences. Illustrations are also often composed
of 2D diagrams (2D, 93.5%; diagram, 88%). All these results point
to the fact that signals are often depicted using response curves.
Figure 14 (B) shows examples of such illustrations.

Mlustrations depicting or explaining tactile illusions, on the other
hand, use codes more evenly, making them challenging to identify
with code combinations. The codes the most used indicate again
that illustrations use 2D elements and diagrams, which does not
help in identifying specific characteristics of these illustrations.
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Figure 13: Proportions of the most used codes (above 50%) for the four meta-codes. Each subset represents, from left to right, 290, 217, 88 and 60

figures. We use an 80% threshold to highlight largely used codes.
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and (C) “tactile illusions” Figures are extracted from: [76] (1), [66] ), [27] (3), [13] (4), [100] (5), and [54] (6), [106] (7), [88] (8), and [86] (9).

Figure 14 (©) shows examples of illustrations of two tactile illusions,
which elicit the sensation of a moving object on the skin.

Regarding illustrations that expose design parameters, they also do
not rely on specific characteristics as their most frequent character-
istic is to use mostly flat graphical elements (91.7%, 55). Like tactile
illusions, the type of content represented to show such parameters
is too broad to exactly pinpoint a specific code combination.

6 Reviewing VTX Illustrations

In this section, we illustrate how the taxonomy can support the re-
view and iteration of the design of VTX illustrations. We reviewed
five illustrations from the dataset in depth by applying codes from
the taxonomy and identifying those which could be added to sup-
port visual communication. Based on this analysis, we propose
variants (Figure 15) that convey information on these other cate-
gories while preserving VTX authenticity, based on their caption
and explanations in the paper.

It is important to note that these figures may not include certain
information on purpose, and that this information may be provided
with other figures or other means in the original paper. Besides, we
can only interpret their original purpose and intention based on
their caption and explanations in the paper. Thus, we do not claim
to correct these illustrations; our endeavor is solely to demonstrate
how the taxonomy supports identifying potential shortcomings and
guide the reflection on finding solutions in further design iterations.

Figure 15 (A shows two users interacting and feeling vibrations
through a blanket [97]. This illustration provides ambiguous infor-
mation on the manipulation performed, the device’s layout and
the time abstraction as the timing of events is unclear. The alter-
nate illustration uses several panels to clarify the timing of events,

clarifies that a button is being pressed to trigger and control the
intensity of vibrations, and that one user controls the input while
the other feels the vibrotactile feedback. We added a speculative
quote that would potentially describe the sensation.

Figure 15 (B) shows a funneling illusion [17]. In this case, no
information is provided on the actuators’ positions on the skin, and
the symbol used for explaining the sensation is similar to the shape of
actuators, introducing ambiguity. The alternate illustration situates
the experience on the forearm (which was the position used in the
experiment [17]), and visually clarifies the position of actuators,
their intensity, and the actual sensation their combination produces.

Figure 15 (©) represents vibrotactile messages felt on the finger-
tips, conveying the relative position of a flying drone to a physical
object [47]. The paper presents this experience as visually immer-
sive, but the illustration does not convey this (congruence of senses).
Furthermore, the number of users interacting/feeling and the trigger
for vibrations are ambiguous (coupling with events). The alternate
version adds information on the congruence of senses by depicting
the virtual scene, it shows that VT feedback are associated to the
drone’s position, and it proposes a speculative trigger for vibrations
as none is presented in the paper.

Figure 15 (D) is described in [96] as “the user uses his index finger
to interact with a virtual object” and presents the user’s finger
trajectories with visual and visual+tactile feedback. We identified
that the user’s movement (visual dynamics) and the visual/tactile
congruence (congruence of senses) could be more explicit. In our
alternate version, we added this information with a stroboscopic
effect and drawing a trajectory, and explicitly visualized that the
user is manipulating a visual virtual object.
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Figure 15: Examples of figures that do not convey all information about the VTX they depict (left-hand side). We propose alternate, more
comprehensive illustrations (right-hand side). Figures are extracted from: [97] @, [17] , [47] ©, [96] @, [114] @

Figure 15 (E) shows a VTX when walking on an augmented
floor [114]. The illustration does not include codes on actuator
placement, nor on user input as the user’s walking activity is not
explicit. Also, the sensations are only suggested and their coupling
with events could be clarified. The alternate illustration adds a
stroboscopic effect to clarify the user is walking on the ground,
clarifies the position of actuators in the floor, and clarifies the
action-coupling behavior of the “gravel” experiment.

7 Designing VIX Illustrations

We conducted a formative study to evaluate 1) whether the taxon-
omy is understandable and usable, and 2) how it supports the design of

VTX illustrations. This study included participants with and without
experience in haptic design and VTX to assess whether prior knowl-
edge is required to make use of the taxonomy. They were provided
with textual prompts describing VTX and asked to illustrate the
experience. We used a within-subject design and captured textual
data through semi-structured interviews (verbal transcripts).

7.1 Participants

We recruited 11 participants from our institutes and research net-
work with different experience levels in haptics and VTX (7 novices
and 4 experienced, respectively denoted by NPx and EPx). None of
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the participants were familiar with the objectives of this research
before the study. Demographics are listed in subsection B.2.

7.2 Procedure

The study included three sketching tasks involving different VIX
illustrations: (1) a warm-up exercise, (2) a prompted VTX illustration
created without reference to the taxonomy, and (3) a prompted VTX
illustration produced after participants had been introduced to the
taxonomy. We denote the first task as VTX-0, the second as VTX-1
and the third as VTX-2. VTX-1 and VTX-2 were counterbalanced to
avoid order effects. The full prompts are provided in subsection B.1.

5 minutes ’ Introduction + demographics ‘
5 minutes ’ Presentation of a ‘VTX + its illustration ‘
10 minutes ’ Warm up pr“ompt (VTX-0) ‘
20 minutes ’ Prompt without tax‘onomy (VTX-1/VTX-2) ‘
10 minutes ’ Introduction to the t;xonomy with example ‘
20 minutes ’ Prompt with taxor‘wmy (VTX-1/VTX-2) ‘
10 minutes ’ Intel‘rviews ‘

Figure 16: Structure of the formative study for each participant.

The procedure is detailed in Figure 16. After completing demo-
graphics forms, participants were introduced to the study and the
concept of VIX using several examples from the dataset. They were
first provided with a warm-up prompt (VTX-0) and had time to ask
question before sketching for five minutes. This helped participants
become familiar with the task and response format, and ensured
smooth engagement with the main tasks. Then, they were provided
with another prompt — VTX-1 or VTX-2 — (up to 5 minutes for
explanation and potential questions) and had 15 minutes for sketch-
ing. This task served as the baseline for participants’ reflection
during the post-hoc interview. After this sketch, the experimenter
introduced them to the taxonomy through verbal examples of VTX
and their codes, and answered any questions they might have. Then,
they were introduced to the last prompt (either VTX-1 or VTX-2)
and had to sketch for up to 15 minutes with support from the taxon-
omy; the taxonomy as seen in Figure 5 was provided as a printout
to each participant. The study finished with semi-structured in-
terviews composed of the following guiding questions: “How did
the taxonomy influence your design choices?”, “Did you rely on the
taxonomy to guide your choices?”, “How constraining was was the
taxonomy?”, “Was there something missing in the taxonomy?”

The study was conducted in different sessions. The experienced
participants were interviewed individually, three online (EP1, EP2,
EP3) and one in person (EP4). The novice participants participated
in person in the context of a design research seminar. They were
interviewed in groups of three and four depending on the prompt
order. Each session lasted about 80 minutes.

7.3 Analysis

Two co-authors independently reviewed the interview transcripts
and inductively coded them using thematic analysis [10]. Their
goal was to identify how participants appropriate the taxonomy,
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as well as patterns or strategies when using it, and if and how the
taxonomy supports designing images for VTX. All transcripts and
the code-book are available as supplementary materials [37].

7.4 Results

We list in this section all codes inductively created from the tran-
scripts in 3 general themes: the benefits and challenges of using the
taxonomy, and how it was integrated in the design process. Overall,
we did not observe clear differences in judgment between novice
and experienced participants towards the taxonomy and its usage.

7.4.1  Benefits of using the taxonomy. First, the taxonomy has po-
tential to spark ideas in one’s mind, and particularly point out
information that could be useful to convey to others (“What I did
use was the visual characteristics and the visual techniques. [...] It
sparked some ideas [and] might help me communicate it to others.
Not just as like a recording for myself to come back later on, but what
would be needed to help someone else without me being present to
understand what I wanted to say. So in that sense, I think that was
really helpful” EP1). The taxonomy was mostly useful to provide a
list of characteristics to consider for illustrations (“it’s always good
to know your options. So yeah, I think it’s definitely a tool that can
be helpful” EP3, “I don’t have this [characteristic] at all. [...] I could
have done that.” NP4, ‘I found it a good instruction to always have
the possibility space in front of my eyes and then to think a little
about it” EP4), which sometimes led to changing the structure of
their sketches (“[with the taxonomy] you had the possibilities what
you could do and some ideas how you could maybe structure your
illustration. And I did some things differently.” NP4). This list was
sometimes, however, missing clear guidelines to better support the
design process (“knowing your options are good, but it doesn’t help
you to make the choice on which options you should choose” EP3, ‘T
had the feeling that it was more of a categorization sheet for me, that
it was a possibility space” EP4, “this is like interesting to see [...] what
am I missing? Where do I put like the actual work that I did, but less as
a guiding tool” EP2). It helped participants reflect on their choices (‘T
[don’t] think [the taxonomy] changed that much [my] own ideation
[...] but it definitely have like an influence in the way that I was like:
‘oh, okay, what I'm doing is a metaphoric association” EP3).

7.4.2  Challenges when using the taxonomy. Several participants
noted that the codes were sometimes too abstract and challenging to
understand without clear visual examples (“in some instance, I was
a bit confused on the wording” EP1, “it’s hard to visualize text. If you
have examples on each of the things [...] then it’s easier to visualize”
NP3). They also remarked they would have needed more time to
fully grasp the taxonomy and use it to its full extent (“having it
explained once is maybe not enough exposure for you to really have
like the appropriation of it” EP3, “I maybe would need some time |...]
to integrate [...] the taxonomy and to [...] use it really as a tool” EP2).
One participant stated they did not use the taxonomy as it did not
match their design process (‘I didn’t really use the [taxonomy] [...]
this didn’t really affect any of my sketch” NPI), highlighting they
did not see benefits in this approach.

7.4.3  Design process with the taxonomy. The only process we ob-
served during the study was participants using the taxonomy post-
hoc, after a first round of sketches. They did not seem to use it
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in a generative manner, looking at codes to get inspirations on
what type of information to convey. Some participants commented
on this, highlighting this was consciously part of their process (‘T
would use this after I create it so I can check if there’s anything else
to improve on my sketch” NP1, “I was more trying to fit my way of
representing into the taxonomy than fit the taxonomy to my way to
represent it” EP3).

8 Discussion

In this section, we discuss insights on VTX illustrations and how
the taxonomy supports the visual design process. Our analysis of
VTX illustrations yields several important insights on their charac-
teristics and uses:

(1) information on vibrotactile displays tends to be shown in
other dedicated figures,

(2) information on the context of use of VIX is visualized in
dedicated figures if represented visually at all,

(3) categories of illustrations are challenging to distinguish
based on their visual appearance,

(4) VTX illustrations tend to represent static scenes without
direct links to users’ actions, and

(5) they rather provide information on stimuli than experiences
produced by vibrotactile displays.

We also uncovered insights on the benefits of the taxonomy to
design illustrations through the case studies and formative study: it
does not guide the design process but facilitates identifying poten-
tially missing information in VTX illustrations, and while designers
might have difficulties to leverage it on the short term, it helps them
reflect on their choices and may spark ideas.

8.1 Illustrations Are Complementary: VT
Displays and Contexts of Use Are
Represented in Dedicated Figures

Our analysis shows, on one hand, that a third to half of the figures do
not provide information on users’ actions (47.3% of figures provide
such information), device (70.3%) and body parts (53.5%). On the
other hand, papers contain in general figures providing information
about system / hardware that are separated from VTX illustrations
(Figure 7). Taken together, this indicates that information on the
context of use of VIX and the system they rely on is distributed over
multiple dedicated figures, or explained textually without visual
representations.

We identified an emphasis in the first figures of papers on this
aspect. As opposed to other figures, teaser figures focus on the input
type and modality used by end-users, the grounding and layout of
the device, and body parts involved in the experience (Figure 9).
This choice of narration can be explained through the theory of
pictorial semiotics [41, 104] and the fact that VTX illustrations are
used to narratively focus [39] on specific instances of stimuli or
sensations a system can produce.

However, identifying the exact purpose of VTX illustrations
remains challenging. We identified combinations of codes repre-
senting “vocabulary” figures that incorporate multiple VTX inten-
tionally and others representing figures that depict raw signals
(see Figure 13 for the codes and Figure 14 for examples). We did not,
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however, identify such combinations for figures depicting tactile
illusions, nor exposing design parameters of VIX. Our interpretation
of this is that such figures can be approached differently, and while
showing similar content, have very different visual characteristics.
For instance, a tactile illusion can be represented with or without
context as shown in Figure 14 ©).

8.2 [Illustrations Tend to Represent Static Scenes

Time is a crucial factor, particularly for vibrotactile feedback, as
vibrations have inherent duration and produce certain density of
information through periods of time. Their timing to users’ actions
(called timeliness by Kim and Schneider [53]) is essential in certain
scenarios, for instance, to reproduce the feeling of exploring materi-
als surfaces [62, 63, 91], create the experience of movement [30], or
produce virtual materials [105]. Yet, our analysis indicates that more
than half of the illustrations are not providing information on users’
actions (47.3% of all figures, see Figure 10), that visual dynamics are
used on 40% of the figures (Figure 12), and that 73.2% of the experi-
ences rely on static vibration patterns (Figure 10) that do not adapt
to external events (either action-coupled or user-independent). Fig-
ure 17 (A) depicts examples of figures not showing user input.

The illustrations in the dataset can be described using three cate-
gories [104], represented in Figure 17 (B); they either present events
happening through time (called an action scheme [104]) and are
multi-phasic pictures, or they show static pictures of recognizable
events and are implied temporality pictures. They are simply static
pictures if they do not represent an action scheme. Our analysis
indicates that illustrations tend to fall more often in the last cat-
egory, thus possibly not conveying information on the timing of
users’ actions. Conversely, some illustrations particularly detail
the action-coupling behavior (Figure 17 (C)) while remaining static
by encoding users’ actions with visual variables, thus representing
action schemes through abstraction.

These insights do not mean that user input is rarely presented
or even depicted in scientific papers; we only reviewed VTX illus-
trations and information could be conveyed textually or in other
figures dedicated to present experimental setups of system architec-
tures for instance. What it rather means is that figures serve several
purposes in the narration of papers [7, 104] by focusing on specific
aspects of VIX. This points out an interesting contrast: previous
work investigated illustrations of interaction scenarios and showed
that many illustrations in HCI show interaction sequences to clarify
what users do (773 figures in [6]), but results on VTX illustrations
are more mixed in that regard, suggesting that the goal of such
illustrations is rather the tactile output.

8.3 Illustrations Depict Stimuli Rather Than
Experiences

Tactile experiences inferred from vibrotactile stimuli are in-
trinsically personal and conventionally captured with question-
naires [25]. Similar to how visual stimuli can induce positive and
negative emotions [33, 64, 80], VTX illustrations also have the
potential to convey experiential information. Using the five experi-
ential dimensions from Kim and Schneider [53] (namely harmony,
expressivity, autotelics, realism, immersion) we evaluated whether
VTX figures potentially convey such information.
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Regarding the harmony of senses, only 154 figures (20.1%) present
clear cases of congruence. Regarding the expressivity of vibrotactile
displays and how they adapt to end-users’ actions, “vocabulary”
figures indicate the potential sensations or experiences a system
can produce, and figures describing action-coupling behaviors un-
derline how the system adapts. Both sets represent in total 349
figures (45.4%). lllustrations conveying information on positive emo-
tions (autotelics'') may be coded through the sensation explanation
category, including 229 figures (29.8%). The two last experiential
dimensions, immersion and realism, have no related codes in the
taxonomy.

Overall, we conclude illustrations do not directly address expe-
riential dimensions of VTX as (1) the taxonomy’s codes were in
part inductively created and do not fully integrate concepts related
to experiential dimensions, and (2) only a subset of illustrations
potentially'? provide information on these experiential dimensions.
While depicting actual experiences remains challenging, the tax-
onomy’s codes hint at possible ways to do so (cf., the sensation
explanation category); illustrations can, for instance, quote partic-
ipants verbalizing their experiences while using the system (e.g.,
[92, 121]). Furthermore, bodymaps [4] are tools designed to facili-
tate reporting on bodily experiences, but they remain scarcely used

!The term is arguably too broad as it refers to different aspects of hedonic models
in HCL Dalsgaard and Schneider [25] discuss this extensively and propose a unified
model to add precisions to the older from Kim and Schneider [53].

2¢.g., being immersed in a virtual environment does not imply that senses are in
harmony (harmony), describing multiple stimuli does not imply that humans perceive
them as such (expressivity), and sensation explanations can be technical and not
particularly relate to (positive) emotions (autotelics)

in the context of VTX illustrations. We explain this by the fact
that VTX illustrations rather focus on representing stimuli than
experiences, likely because papers presenting novel results related
to vibrotactile feedback tend to be techno-centric.

8.4 Benefits and Limitations of Using the
Taxonomy for Designing Illustrations

This research identified essential characteristics of VTX illustra-
tions and produced a taxonomy, which can be used as an actionable
analytical tool to guide the analysis of illustrations, supporting re-
search work as we demonstrated. Through five case studies, we also
demonstrated how the taxonomy helps pointing out potentially
missing or ambiguous information in VTX illustrations. Used as
such, the taxonomy can support iterating on existing illustrations
by listing what information to consider when visually conveying
information on VIX and how to represent it. It therefore enables
to estimate the type and quantity of visual information conveyed
within one or several VTX, though it does not assess the quality
of these illustrations or determine which visualization might be
more efficient at conveying the same information. For instance,
the revised illustrations depicted in Figure 15 increase the amount
of information conveyed and provide more context on user input
and actuator placement, and details the felt or targeted experiences.
Whether they actually improved the original illustrations depends
on their context and purpose which requires further research us-
ing other methods to thoroughly evaluate. This quality essentially
builds on the designer’s knowledge and skills to produce meaning-
ful images and is outside the scope of this work.
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The results of the formative study point in the same direction;
they show that the taxonomy can support designers in reviewing
their sketches and reflect on their choices, but not necessarily guide
them. The taxonomy can “spark ideas” and “be helpful” to “know
your options”, however, participants remarked it did not directly
provide guidelines on how to create illustrations from scratch (see
section 7.4). This was indeed not the goal of this work as we aimed
to identify the existence and use of atomic visual characteristics of
illustrations, rather than analyzing how efficiently and why they
convey specific information. In contrast to co-authors, participants
were only shortly exposed to the taxonomy, and they remarked
this short exposure might not have been sufficient to fully explore
the benefits it can provide. Further work is thus required to better
understand how longer exposure to the taxonomy may impact the
design process of VTX illustrations.

9 Limitations of the Methodology

One limitation of our data collection approach is the restriction to
only two databases — ACM and IEEE - which may have potentially
confounded the comprehensiveness of the findings. While these
platforms are highly representative of the HCI and Haptics research
communities, hosting many key conferences and journals, other
databases such as Web of Science!? or Scopus!* could have provided
additional coverage. Antoine et al. [6] included patents in their
review strategy, suggesting that important contributions may also
exist outside the scope of academic publications.

Additionally, our methodology, like previous work [6], considers
images independently from the context of their paper. The rationale
is to holistically investigate graphical characteristics regardless of
their context (i.e., additional textual information or other figures
across the paper). A drawback of this approach is that it becomes
challenging to grasp whether they purposefully provide limited
details on certain aspects of VIX because such information is ad-
dressed elsewhere in the paper. While our analysis indicates figures
convey specific types of information, it remains limited to iden-
tify exact strategies used by authors to distribute this information
in their paper. Future work on this aspect could complement our
methodology and provide further details on these strategies.

10 Conclusion and Future Work

We collected 1652 papers from the ACM DL and IEEE Xplore
databases, from the past 25 years that included the keyword “vibro-
tactile” in their title or abstract. We categorized in total 1509 figures
from 535 papers, then analyzed and coded 768 figures represent-
ing vibrotactile experiences from 409 papers using a taxonomy we
created deductively from previous work on illustrations and induc-
tively from samples of vibrotactile experience (VTX) illustrations.
From these codes, we uncovered several insights that may impact
the design of VTXs illustrations overall: information on vibrotactile
displays and VTX are often divided in dedicated figures, VTX illus-
trations tend to be static and not provide much information on the
timing between VT feedback and users’ actions, and they rather
provide information on the stimuli rather than actual experiences.
Our analysis also underlined that categories of illustrations are

Bhttps://clarivate.com/products/web- of-science/
“https://www.scopus.com/
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challenging to identify only from their visual characteristics, as dif-
ferent approaches and strategies are used to present similar content.
We then demonstrated how the taxonomy can be used to review
in depth VTX figures and help identifying potentially missing in-
formation to address them in future design iterations if necessary.
We also conducted a formative study with experienced and novice
haptic designers to evaluate how the taxonomy could support their
workflow. Results indicate the taxonomy is challenging to fully
grasp in a short time, but that it lists important characteristics to
consider and helps to analyzing one’s design choices.

Beyond manual analyses, the structure of this taxonomy could
be leveraged by generative Al approaches to address two major
challenges of illustration design: 1) suggest adding significant infor-
mation in the form of recommendations or graphical elements, and
2) propose generated images as drafts to build on. Such Al models,
for instance, can be trained on existing images in the literature
(e.g., [90]) in addition to those from the dataset including their re-
spective codes from the taxonomy and verbal representations as
their descriptions. This avenue shows strong potential as recent
work produced interesting initial results for automatically gener-
ated scientific illustrations [89]. Future work can build on these
approaches, for instance, by leveraging methods such as fine-tuning
existing models or employing retrieval-augmented generation, and
by developing multi-modal tools to support users in the creative
process of designing illustrations [81].

This taxonomy was designed for VTX illustrations but its scope
likely encompasses other types of haptic experiences. Many dimen-
sions are inspired from the literature on comic books and interactive
scenarios (composition, visual characteristics, visual techniques), or
come from the haptic literature and already include more than
VTX (device > grounding, cognitive framework). The only codes that
actually strongly depend on vibration characteristics are the en-
coding of their dynamics, and even these codes could be adapted to
other modalities (e.g., electro-stimulation uses similar characteris-
tics). Future work should nevertheless thoroughly investigate and
validate whether this taxonomy can characterize images of haptic
experiences leveraging other modalities such as electro-stimulation,
ultrasonic haptics, force feedback, or thermal haptics, and what
significant information would be missing or irrelevant. This would
ensure that the taxonomy remains inclusive and relevant across a
broader range of haptic applications.
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Details: Data Collection
Formative Study Details

Prompts

“A person is riding a bike in the city. They are wearing a device
(haptic display) with two small vibration motors attached to
their temples—one on each side of the head. When it’s time to
turn right at an intersection, the motor on the right temple
vibrates three short times in a row. This tells the rider to turn
right.”

“A person wears a haptic suit with four vibration motors—one
on each foot and one on each arm. As they watch a 2D game
character move on a screen, the vibrations respond to what
the character is doing. When the character jumps and grabs
a wall, the motors vibrate to simulate the feeling of physical

effort—like pulling or gripping.”

VTX-2 “A person wears a shirt with a row of 10 vibration motors along

B.2

their spine, from the neck down to the lower back. The motors
activate one after another in a smooth sequence—starting at
the top and moving down to the bottom. Each motor vibrates
for a short time, overlapping slightly with the one before it.
This creates the illusion of something moving quickly down
the spine-like a hopping rabbit.”
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Table 1: Eligibility criteria for figures (IF=include, EF=exclude).

Short Description
IF-1  Representing Intent  Figures that illustrate the purpose or rationale behind the use of vibrotactile
feedback (e.g., user goals, design motivations).
IF-2  Representing Con- Figures showing the environment or scenario in which vibrotactile interac-
text tion/experience occurs.
IF-3  Representing User(s) Figures that depict the presence, posture, role, or actions of users interacting
with the system.
IF-4  Representing Vibro- Visualizations of hardware setups of vibrotactile displays. Include clear
tactile Display hardware depictions even if the device is off-body or shown in an abstract
manner.
IF-5  Representing Vibro- Figures showing signal characteristics or how vibration is delivered or
tactile Signals designed, e.g. waveform diagrams, frequency/amplitude/time graphs, spa-
tial/temporal maps of vibration points, conceptual illustrations of vibration
patterns, graphical user interfaces of design tools.
EF-1  No Connection to Vi- General illustrations unrelated to touch or vibrotactile feedback such as UI
brotactile Elements ~ mockups without haptic components, graphs of unrelated (system) perfor-
mance metrics.
EF-2  Irrelevant Technical Electrical schematics, PCB layouts, or signal processing diagrams without
Diagrams clear indication of vibrotactile output or relevance to the user experience.
EF-3 Purely Textual or Tables or figures with only text, numbers, or codes and no visual represen-
Tabular Data tation.
EF-4 Results-Only  Fig- Bar graphs, line plots, or statistical figures that show only performance
ures results (e.g., accuracy, response time) without context of design or imple-
mentation.
EF-5 Vibrotactile Display Photos or any other type of illustration showing only components of the
Components vibrotactile display, e.g. actuators, PCB etc.
. 20 publisher ACM IEEE
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Figure 18: Count of papers included in the final dataset (n=409), split by year and publisher (189 from ACM and 220 from IEEE).
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Table 2: Demographics of experienced (EP) and novice (NP) participants.

Experience with Level of
D haptics/VTX (years)  expertise Age  Gender
EP1 4-6 Expert 31 M
EP2 1-3 Intermediate 25 M
EP3 1-3 Advanced 29 M
EP4 4-6 Advanced 44 M
NP1 <1 Beginner 22 F
NP2 <1 Beginner 20 F
NP3 <1 Beginner 27 M
NP4 <1 Beginner 21 F
NP5 <1 Beginner 21 F
NP6 <1 Beginner 22 F
NP7 <1 Beginner 22 F
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